Starting a new Lecture Notes Series on MIT 18.650 Statistics for Applications, Fall 2016
Youtube Lecture Playlist CreditsChannel Name: MIT OpenCourseWare
So Let Us Start to This Journey of Learning
MIT 18.650 Statistics for Applications, Fall 2016 By Lecture Notes together!
Lecture 1: 1. Introduction to Statistics
Lecture 2: 2. Introduction to Statistics (cont.)
Lecture 3: 3. Parametric Inference
Lecture 5: 5. Maximum Likelihood Estimation (cont.)
Lecture 7: 7. Parametric Hypothesis Testing
Lecture 8: 8. Parametric Hypothesis Testing (cont.)
Lecture 9: 9. Parametric Hypothesis Testing (cont.)
Lecture 11: 12. Testing Goodness of Fit (cont.)
Lecture 12: 13. Regression
Lecture 13: 14. Regression (cont.)
Lecture 14: 15. Regression (cont.)
Lecture 15: 17. Bayesian Statistics
Lecture 16: 18. Bayesian Statistics (cont.)
Lecture 17: 19. Principal Component Analysis
Lecture 18: 20. Principal Component Analysis (cont.)
Lecture 19: 21. Generalized Linear Models
Lecture 20: 22. Generalized Linear Models (cont.)
Lecture 21: 23. Generalized Linear Models (cont.)
Lecture 22: 24. Generalized Linear Models (cont.)