Starting a new Lecture Notes Series on MIT 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013
.png)
.png)
Youtube Lecture Playlist CreditsChannel Name: MIT OpenCourseWare
So Let Us Start to This Journey of Learning
MIT 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 By Lecture Notes together!
Lecture 1: 1. Probability Models and Axioms
Lecture 3: Geniuses and Chocolates
Lecture 4: Uniform Probabilities on a Square
Lecture 5: 2. Conditioning and Bayes' Rule
Lecture 6: A Coin Tossing Puzzle
Lecture 7: Conditional Probability Example
Lecture 8: The Monty Hall Problem
Lecture 9: 3. Independence
Lecture 10: A Random Walker
Lecture 11: Communication over a Noisy Channel
Lecture 12: Network Reliability
Lecture 13: A Chess Tournament Problem
Lecture 14: 4. Counting
Lecture 15: Rooks on a Chessboard
Lecture 16: Hypergeometric Probabilities
Lecture 17: 5. Discrete Random Variables I
Lecture 18: Sampling People on Buses
Lecture 19: PMF of a Function of a Random Variable
Lecture 20: 6. Discrete Random Variables II
Lecture 21: Flipping a Coin a Random Number of Times
Lecture 22: Joint Probability Mass Function (PMF) Drill 1
Lecture 23: The Coupon Collector Problem
Lecture 24: 7. Discrete Random Variables III
Lecture 25: Joint Probability Mass Function (PMF) Drill 2
Lecture 26: 8. Continuous Random Variables
Lecture 28: A Mixed Distribution Example
Lecture 29: Mean & Variance of the Exponential
Lecture 30: Normal Probability Calculation
Lecture 31: 9. Multiple Continuous Random Variables
Lecture 32: Uniform Probabilities on a Triangle
Lecture 33: Probability that Three Pieces Form a Triangle
Lecture 34: The Absent Minded Professor
Lecture 38: A Derived Distribution Example
Lecture 40: Ambulance Travel Time
Lecture 41: 11. Derived Distributions (ctd.); Covariance
Lecture 44: 12. Iterated Expectations
Lecture 45: The Variance in the Stick Breaking Problem
Lecture 46: Widgets and Crates
Lecture 47: Using the Conditional Expectation and Variance
Lecture 48: A Random Number of Coin Flips
Lecture 49: A Coin with Random Bias
Lecture 50: 13. Bernoulli Process
Lecture 51: Bernoulli Process Practice
Lecture 52: 14. Poisson Process I
Lecture 53: Competing Exponentials
Lecture 54: 15. Poisson Process II
Lecture 55: Random Incidence Under Erlang Arrivals
Lecture 56: 16. Markov Chains I
Lecture 57: Setting Up a Markov Chain
Lecture 58: Markov Chain Practice 1
Lecture 59: 17. Markov Chains II
Lecture 60: 18. Markov Chains III
Lecture 61: Mean First Passage and Recurrence Times
Lecture 62: 19. Weak Law of Large Numbers
Lecture 65: Convergence in Probability Example
Lecture 66: 20. Central Limit Theorem
Lecture 67: Probabilty Bounds
Lecture 68: Using the Central Limit Theorem
Lecture 69: 21. Bayesian Statistical Inference I
Lecture 70: 22. Bayesian Statistical Inference II
Lecture 71: Inferring a Parameter of Uniform Part 1
Lecture 72: Inferring a Parameter of Uniform Part 2
Lecture 73: An Inference Example
Lecture 74: 23. Classical Statistical Inference I
Lecture 75: 24. Classical Inference II
Lecture 76: 25. Classical Inference III