Starting a new Lecture Notes Series on Computer - Numerical Optimization
%20(4).png)
%20(4).png)
Youtube Lecture Playlist CreditsChannel Name: nptelhrd
So Let Us Start to This Journey of Learning
Computer - Numerical Optimization By Lecture Notes together!
Lecture 1: Mod-01 Lec-01 Introduction
Lecture 2: Mod-02 Lec-02 Mathematical Background
Lecture 6: Mod-04 Lec-06 Convex Sets
Lecture 7: Mod-04 Lec-07 Convex Sets (contd)
Lecture 8: Mod-05 Lec-08 Convex Functions
Lecture 9: Mod-05 Lec-09 Convex Functions (contd)
Lecture 10: Mod-06 Lec-10 Multi Dimensional Optimization - Optimality Conditions, Conceptual Algorithm
Lecture 11: Mod-06 Lec-11 Line Search Techniques
Lecture 12: Mod-06 Lec-12 Global Convergence Theorem
Lecture 13: Mod-06 Lec-13 Steepest Descent Method
Lecture 14: Mod-06 Lec-14 Classical Newton Method
Lecture 18: Mod-06 Lec-18 Conjugate Directions
Lecture 20: Mod-07 Lec-20 Constrained Optimization - Local and Global Solutions, Conceptual Algorithm
Lecture 21: Mod-07 Lec-21 Feasible and Descent Directions
Lecture 22: Mod-07 Lec-22 First Order KKT Conditions
Lecture 23: Mod-07 Lec-23 Constraint Qualifications
Lecture 24: Mod-07 Lec-24 Convex Programming Problem
Lecture 25: Mod-07 Lec-25 Second Order KKT Conditions
Lecture 27: Mod-08 Lec-27 Weak and Strong Duality
Lecture 28: Mod-08 Lec-28 Geometric Interpretation
Lecture 30: Mod-09 Lec-30 Linear Programming Problem
Lecture 31: Mod-09 Lec-31 Geometric Solution
Lecture 32: Mod-09 Lec-32 Basic Feasible Solution
Lecture 35: Mod-09 Lec-35 Duality in Linear Programming
Lecture 37: Mod-09 Lec-37 Karmarkar's Method
Lecture 39: Mod-10 Lec-39 Active Set Method (contd)
Lecture 40: Mod-10 Lec-40 Barrier and Penalty Methods, Augmented Lagrangian Method and Cutting Plane Method
Lecture 41: Mod-10 Lec-41 Summary