Starting a new Lecture Notes Series on Computer Science - Pattern Recognition
%20(3).png)
%20(3).png)
Youtube Lecture Playlist CreditsChannel Name: nptelhrd
So Let Us Start to This Journey of Learning
Computer Science - Pattern Recognition By Lecture Notes together!
Lecture 3: Mod-01 Lec-03 Principles of Pattern Recognition III (Classification and Bayes Decision Rule)
Lecture 4: Mod-01 Lec-04 Clustering vs. Classification
Lecture 6: Mod-01 Lec-06 Eigen Value and Eigen Vectors
Lecture 7: Mod-01 Lec-07 Vector Spaces
Lecture 8: Mod-01 Lec-08 Rank of Matrix and SVD
Lecture 9: Mod-02 Lec-09 Types of Errors
Lecture 10: Mod-02 Lec-10 Examples of Bayes Decision Rule
Lecture 12: Mod-02 Lec-12 Training Set, Test Set
Lecture 19: Mod-02 Lec-20 K-NN Classifier
Lecture 20: Mod-02 Lec-21 Principal Component Analysis (PCA)
Lecture 21: Mod-02 Lec-22 Fisher’s LDA
Lecture 22: Mod-02 Lec-23 Gaussian Mixture Model (GMM)
Lecture 23: Mod-02 Lec-24 Assignments
Lecture 24: Mod-03 Lec-25 Basics of Clustering, Similarity/Dissimilarity Measures, Clustering Criteria.
Lecture 26: Mod-03 Lec-27 K-Medoids and DBSCAN
Lecture 30: Mod-02 Lec-16 Bayes Theorem
Lecture 31: Mod-04 Lec-31 Cauchy Schwartz Inequality
Lecture 34: Mod-05 Lec-34 Principal Components
Lecture 38: Mod-06 Lec-38 Probability Density Estimation
Lecture 39: Mod-06 Lec-39 Visualization and Aggregation
Lecture 40: Mod-06 Lec-40 Support Vector Machine (SVM)
Lecture 41: Mod-06 Lec-41 FCM and Soft-Computing Techniques
Lecture 42: Mod-06 Lec-42 Examples of Uses or Application of Pattern Recognition; And When to do clustering
Lecture 43: Mod-06 Lec-43 Examples of Real-Life Dataset