Starting a new Lecture Notes Series on Data Analysis for Biologists
.png)
.png)
Youtube Lecture Playlist CreditsChannel Name: NPTEL IIT Guwahati
So Let Us Start to This Journey of Learning
Data Analysis for Biologists By Lecture Notes together!
Lecture 1: Data Analysis for Biologists
Lecture 2: Lec 1: Rules of probability
Lecture 3: Lec 2: Discrete probability distribution
Lecture 4: Lec 3: Continuous probability distribution
Lecture 5: Lec 4: Moments: mean and variance
Lecture 6: Lec 5: Moments: variance and covariance
Lecture 7: Lec 6: Bayes theorem and likelihood
Lecture 8: Lec 7: Concept of statistical tests
Lecture 9: Lec 8: Vector and vector operations
Lecture 10: Lec 9: Matrix and matrix operations
Lecture 11: Lec 10: Determinant and Inverse of a matrix
Lecture 12: Lec 11: Eigenvalue and eigenvector
Lecture 13: Lec 12: Linear system of equations
Lecture 14: Lec 13: Singular value decomposition
Lecture 15: Lec 14: Getting ready with R
Lecture 16: Lec 15: Algebraic and logical operations in R
Lecture 17: Lec 16: Reading and writing data
Lecture 19: Lec 18: Statistics using R – t-test and ANOVA
Lecture 20: Lec 19: Linear algebra using R
Lecture 21: Lec 20: Scatter plot, Line plot & Bar plot
Lecture 22: Lec 21: Histogram & Box plot
Lecture 23: Lec 22: Heatmap and Volcano plot
Lecture 24: Lec 23: Network visualization
Lecture 25: Lec 24: Data visualization using ggplot2 - I
Lecture 26: Lec 25: Data visualization using ggplo2 - II
Lecture 27: Lec 26: Correlations
Lecture 28: Lec 27: Linear regression - I
Lecture 29: Lec 28: Linear regression - II
Lecture 30: Lec 29: Linear regression using R
Lecture 31: Lec 30: Multiple linear regression
Lecture 32: Lec 31: Multiple linear regression using R
Lecture 33: Lec 32: Nonlinear regression
Lecture 34: Lec 33: Nonlinear regression using R
Lecture 35: Lec 34: Clustering and classification
Lecture 36: Lec 35: Logistic regression
Lecture 37: Lec 36: Logistic regression using R
Lecture 38: Lec 37: Distance mesaures for clustering
Lecture 39: Lec 38: k-means clustering
Lecture 40: Lec 39: k-means clustering using R
Lecture 41: Lec 40: Hierarchical clustering
Lecture 42: Lec 41: Hierarchical clustering using R
Lecture 43: Lec 42: Decision tree classifier
Lecture 44: Lec 43: Support vector machines
Lecture 45: Lec 44: Higher-dimensional data in biology
Lecture 46: Lec 45: Principle component analysis
Lecture 47: Lec 46: Principle component analysis using R
Lecture 48: Lec 47: t-SNE
Lecture 49: Lec 48: t-SNE using R
Lecture 50: Lec 49: Diffusion maps