Starting a new Lecture Notes Series on MIT 18.06SC Linear Algebra, Fall 2011
Youtube Lecture Playlist CreditsChannel Name: MIT OpenCourseWare
So Let Us Start to This Journey of Learning
MIT 18.06SC Linear Algebra, Fall 2011 By Lecture Notes together!
Lecture 3: 1. The Geometry of Linear Equations
Lecture 4: Geometry of Linear Algebra
Lecture 6: An Overview of Key Ideas
Lecture 7: 2. Elimination with Matrices.
Lecture 8: Elimination with Matrices
Lecture 9: 3. Multiplication and Inverse Matrices
Lecture 10: Inverse Matrices
Lecture 11: 4. Factorization into A = LU
Lecture 12: LU Decomposition
Lecture 13: 5. Transposes, Permutations, Spaces R^n
Lecture 14: Subspaces of Three Dimensional Space
Lecture 15: 6. Column Space and Nullspace
Lecture 16: Vector Subspaces
Lecture 18: Solving Ax=0
Lecture 19: 8. Solving Ax = b: Row Reduced Form R
Lecture 20: Solving Ax=b
Lecture 21: 9. Independence, Basis, and Dimension
Lecture 22: Basis and Dimension
Lecture 23: 10. The Four Fundamental Subspaces
Lecture 24: Computing the Four Fundamental Subspaces
Lecture 25: 11. Matrix Spaces; Rank 1; Small World Graphs
Lecture 26: Matrix Spaces
Lecture 27: 12. Graphs, Networks, Incidence Matrices
Lecture 28: Graphs and Networks
Lecture 29: 13. Quiz 1 Review
Lecture 30: Exam #1 Problem Solving
Lecture 31: 14. Orthogonal Vectors and Subspaces
Lecture 32: Orthogonal Vectors and Subspaces
Lecture 33: 15. Projections onto Subspaces
Lecture 34: Projection into Subspaces
Lecture 35: 16. Projection Matrices and Least Squares
Lecture 36: Least Squares Approximation
Lecture 37: 17. Orthogonal Matrices and Gram-Schmidt
Lecture 38: Gram-Schmidt Orthogonalization
Lecture 39: 18. Properties of Determinants
Lecture 40: Properties of Determinants
Lecture 41: 19. Determinant Formulas and Cofactors
Lecture 42: Determinants
Lecture 43: 20. Cramer's Rule, Inverse Matrix, and Volume
Lecture 44: Determinants and Volume
Lecture 45: 21. Eigenvalues and Eigenvectors
Lecture 46: Eigenvalues and Eigenvectors
Lecture 47: 22. Diagonalization and Powers of A
Lecture 48: Powers of a Matrix
Lecture 49: 23. Differential Equations and exp(At)
Lecture 50: Differential Equations and exp (At)
Lecture 51: 24. Markov Matrices; Fourier Series
Lecture 52: Markov Matrices
Lecture 53: 24b. Quiz 2 Review
Lecture 54: Exam #2 Problem Solving
Lecture 55: 25. Symmetric Matrices and Positive Definiteness
Lecture 56: Symmetric Matrices and Positive Definiteness
Lecture 57: 26. Complex Matrices; Fast Fourier Transform
Lecture 58: Complex Matrices
Lecture 59: 27. Positive Definite Matrices and Minima
Lecture 60: Positive Definite Matrices and Minima
Lecture 61: 28. Similar Matrices and Jordan Form
Lecture 62: Similar Matrices
Lecture 63: 29. Singular Value Decomposition
Lecture 64: Computing the Singular Value Decomposition
Lecture 65: 30. Linear Transformations and Their Matrices
Lecture 66: Linear Transformations
Lecture 67: 31. Change of Basis; Image Compression
Lecture 68: Change of Basis
Lecture 69: 33. Left and Right Inverses; Pseudoinverse
Lecture 70: Pseudoinverses
Lecture 71: 32. Quiz 3 Review
Lecture 72: Exam #3 Problem Solving
Lecture 73: 34. Final Course Review
Lecture 74: Final Exam Problem Solving