Starting a new Lecture Notes Series on MIT RES.9-003 Brains, Minds and Machines Summer Course, Summer 2015
Youtube Lecture Playlist CreditsChannel Name: MIT OpenCourseWare
So Let Us Start to This Journey of Learning
MIT RES.9-003 Brains, Minds and Machines Summer Course, Summer 2015 By Lecture Notes together!
Lecture 136: L13.5 Forecast Revisions
Lecture 137: L13.6 The Conditional Variance
Lecture 138: L13.7 Derivation of the Law of Total Variance
Lecture 139: L13.8 A Simple Example
Lecture 140: L13.9 Section Means and Variances
Lecture 143: S13.1 Conditional Expectation Properties
Lecture 144: L14.1 Lecture Overview
Lecture 145: L14.2 Overview of Some Application Domains
Lecture 146: L14.3 Types of Inference Problems
Lecture 147: L14.4 The Bayesian Inference Framework
Lecture 148: L14.5 Discrete Parameter, Discrete Observation
Lecture 149: L14.6 Discrete Parameter, Continuous Observation
Lecture 150: L14.7 Continuous Parameter, Continuous Observation
Lecture 153: L14.10 Summary
Lecture 154: S14.1 The Beta Formula
Lecture 155: L15.1 Lecture Overview
Lecture 156: L15.2 Recognizing Normal PDFs
Lecture 158: L15.4 The Case of Multiple Observations
Lecture 159: L15.5 The Mean Squared Error
Lecture 160: L15.6 Multiple Parameters; Trajectory Estimation
Lecture 161: L15.7 Linear Normal Models
Lecture 162: L15.8 Trajectory Estimation Illustration
Lecture 163: L16.1 Lecture Overview
Lecture 164: L16.2 LMS Estimation in the Absence of Observations
Lecture 166: L16.4 LMS Performance Evaluation
Lecture 167: L16.5 Example: The LMS Estimate
Lecture 168: L16.6 Example Continued: LMS Performance Evaluation
Lecture 170: L16.8 Properties of the LMS Estimation Error
Lecture 171: L17.1 Lecture Overview
Lecture 172: L17.2 LLMS Formulation
Lecture 173: L17.3 Solution to the LLMS Problem
Lecture 175: L17.5 LLMS Example
Lecture 176: L17.6 LLMS for Inferring the Parameter of a Coin
Lecture 177: L17.7 LLMS with Multiple Observations
Lecture 179: L17.9 The Representation of the Data Matters in LLMS
Lecture 180: L18.1 Lecture Overview